



Tetrahedron Letters 41 (2000) 4909-4912

## A highly efficient generation of $\gamma$ -cyclodextrin-bicapped $C_{60}^{1-}$ in aqueous solution

Shin-ichi Takekuma, Hideko Takekuma, Takuya Matsumoto and Zen-ichi Yoshida\*

Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka-shi, Osaka 577-8502, Japan

Received 24 February 2000; revised 17 April 2000; accepted 28 April 2000

## **Abstract**

The successive treatment of  $\gamma$ -cyclodextrin-bicapped  $C_{60}$  complex (1) with FeCl<sub>2</sub> and NaOH in aqueous solution at ambient temperature produces rapidly its  $C_{60}^{1-}$  complex in quantitative yield. The  $C_{60}^{1-}$  complex formation is quantitative, even in the contact with  $O_2$ , if  $Na_2S_2O_4$  is present. Plausible electron transfer mechanism is discussed. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: supramolecular chemistry; fullerenes; cyclodextrins; electron transfer.

Generation of  $C_{60}^{n-}$  in aqueous solvent is reported to be difficult because of its kinetic instability (i.e. ready formation of  $O_2^{\bullet-}$  and  $C_{60}$  by dissolved  $O_2$ ). Our interest has been focused on the chemical generation of wholly encapsulated  $\gamma$ -cyclodextrin-bicapped  $C_{60}^{n-}$  ( $n=1\sim6$ ), and their characteristic properties and chemical functions. During the course of our investigations on the reduction behavior of  $C_{60}$  in  $\gamma$ -cyclodextrin-bicapped  $C_{60}$  (1), (abbreviated as  $C_{60}$ ), we discovered that a facile electron transfer from  $Na_2S_2O_4$  to the  $C_{60}$  in complex 1 in aqueous solution at room temperature under argon, generating the relatively stable  $\gamma$ -cyclodextrin-bicapped  $C_{60}^{n-}$  (n=1 and 2) (abbreviated as  $C_{60}^{n-}$ ) took place by using an iron(II) chloride-18-crown-6 (1:1) complex as mediator of the electron transfer.<sup>3</sup> Furthermore, we found the selective reduction of 1 with NaH and NaBH<sub>4</sub> in DMSO leading to the corresponding  $C_{60}^{1-}$  and  $C_{60}^{2-}/\gamma$ -cyclodextrin ( $\gamma$ -CyD) complex, respectively.<sup>4</sup> These reactions are valuable as a generation method for  $C_{60}^{n-}$  ( $n=1\sim2$ ) included in  $\gamma$ -CyDs, but the non-quantitative yield is an inherent drawback. We now report a reaction leading to quantitative formation of the  $C_{60}^{1-}$  in aqueous solution.

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(00)00717-6

<sup>\*</sup> Corresponding author. Tel: +00 81 6 6730 5880 (ext. 4020); fax: +00 81 6 6727 4301; e-mail: takekuma@apch.kindai. ac.jp

The electron transfer was monitored by VIS/NIR (350–1100 nm) spectrophotometer. A water-soluble sample of  $\gamma$ -CyD-bicapped  $C_{60}$  complex (1) was prepared according to our paper.<sup>3,5</sup> The VIS/NIR diagram for the generation of  $C_{60}^{1-}$  is shown in Fig. 1B; the experimental conditions are described in the figure caption. As shown in Fig. 1, 1 h after complex 1 was dissolved in aqueous solution containing iron(II) chloride, a very weak band due to  $C_{60}^{2-}$  (961 nm)<sup>3,6</sup> appeared (time to reach maximum absorption: 1 h, **b**, in Fig. 1A).

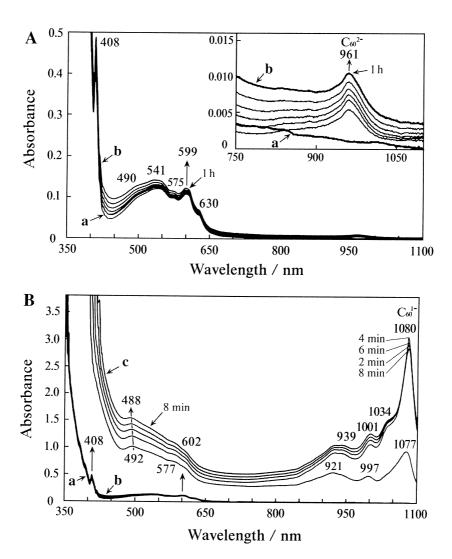



Figure 1. The VIS/NIR spectra of  $\gamma$ -cyclodextrin-bicapped  $C_{60}$  complex (1)-iron(II) chloride–NaOH system in aqueous solution at room temperature, leading to the quantitative generation of  $C_{60}^{1-}$  (measured by a Beckman DU 640 spectrophotometer). (A) The inset illustrates the enlargement of the absorbance between 750 and 1100 nm. a: Complex 1 in the presence of  $\gamma$ -cyclodextrin in aqueous solution [3 mL, concentration of complex 1: 1.0 mg/mL (ca. 0.15  $\mu$ mol, length of the cell: 1 cm, pH 6.4, 25.4°C]. b: One hour after complex 1 (3.0 mg, ca. 0.45  $\mu$ mol) was dissolved in aqueous solution containing iron(II) chloride [3 mL, concentration of iron(II) chloride: 0.2 mg/mL (1.6  $\mu$ mol), pH 5.9, 22.1°C] (interval time = 10 min). (B) c: After adding aq. NaOH (2.5 M, 10  $\mu$ L) to the aqueous solution b in contact with air (pH 11.4, 22.6°C, interval time = 2 min)

By adding aq. NaOH to the solution **b**, the solution turned a pale reddish-brown and each absorbance of the characteristic bands for  $C_{60}^{1-}$  (1080, 1034sh, 1001, 939, and 921 nm)<sup>2,7-11</sup> (time to reach maximum absorption = 4 min, **c** in Fig. 1B) and its related bands (602sh and 488 nm) (time to reach maximum absorption = 8 min) was increased. From Fig. 1, it is demonstrated that formation of  $\gamma$ -CyD-bicapped  $C_{60}^{1-}$  is quantitative.<sup>12</sup> Although the characteristic NIR absorption bands for the generated  $C_{60}^{1-}$  gradually decreased in contact with air, quantitative generation of the  $C_{60}^{1-}$  species was completely restored by adding  $Na_2S_2O_4$  to the solution.<sup>12,13</sup> Thus, we have established the quantitative generation of  $C_{60}^{1-}$  in water in its  $\gamma$ -cyclodextrin bicapped form even in the presence of molecular oxygen. From the experimental data, the molar absorption coefficient ( $\epsilon$ ) of  $\gamma$ -CyD-bicapped  $C_{60}^{1-}$  was determined to be 8600 at  $\lambda_{max}$  1080 nm.

Experiments under the same conditions as above, using other transition metal chlorides [i.e. iron(III) chloride, copper(I) chloride, copper(II) chloride, ruthenium(III) chloride, or rhodium(III) chloride] in place of iron(II) chloride in the presence and absence of Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> showed no generation of  $\gamma$ -CyD-bicapped C<sub>60</sub><sup>n-</sup> (n = 1 and 2).

The highly efficient (100%) generation of  $C_{60}^{1-}$  in the wholly encapsulated complex might be explained by the following sequential processes (Scheme 1): (1) formation of the complex **II** (spectra **b** in Fig. 1) by coordination of hydroxy oxygens at the belt region<sup>5</sup> of **I** to the Fe<sup>2+</sup> ion; (2) formation of complex **III** having a strong electron donor system (-O<sup>-</sup>···Fe<sup>2+</sup>···O<sup>-</sup>-) by deprotonation of complex **II** with NaOH; (3) formation of complex **IV** by highly efficient intramolecular electron transfer from O<sup>-</sup> to  $C_{60}$  in the complex **III** (spectra **c** in Fig. 1B), and (4) regeneration of complex **III** from complex **IV** (or complex **V**) by Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>.

Scheme 1. A plausible electron transfer mechanism for the formation of  $\gamma$ -cyclodextrin-bicapped  $C_{60}^{1-}$  in the 1-FeCl<sub>2</sub>-NaOH (and Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>) system in aqueous solution:  $C_{60}$  and  $\gamma$ -CyD of the upper side in I $\sim$ V are omitted. The value of n is considered to be 1

This very simple and highly efficient generation method of  $C_{60}^{1-}$  from  $C_{60}$  in water in the  $\gamma$ -CyD-bicapped form is expected to be valuable for developing new reactions which proceed via electron transfer.

## Acknowledgements

The financial support of the Japan Society for the Promotion of Science, the Ministry of Education, Science, Sports and Culture, and the Asahi Glass Foundation is gratefully acknowledged.

## References

- 1. Partly presented at the 16th Fullerene General Symposium, January 20–21, 1999, Okazaki, Japan, Abstract P2B-04 (p. 209).
- 2. Ohlendorf, V.; Willnow, A.; Hungerbuhler, H.; Guldi, D. M.; Asmus, K.-D. J. Chem. Soc., Chem. Commun. 1995, 759–760.
- 3. Takekuma, S.; Takekuma, H.; Matsumoto, T.; Yoshida, Z. Tetrahedron Lett. 2000, 41, 1043-1046.
- 4. Takekuma, S.; Takekuma, H.; Matsumoto, T.; Yoshida, Z. Tetrahedron Lett. 2000, 41, 2929–2932.
- 5. Yoshida, Z.; Takekuma, H.; Takekuma, S.; Matsubara, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 1597-1599.
- 6. Its amount is estimated as 0.2 mole% for the starting  $C_{60}$ . Generated  $C_{60}^{2-}$  is considered to be eventually converted into  $C_{60}^{1-}$  under Fig. 1B condition via  $C_{60}^{1-}$  or  $C_{60}$  formed by electron transfer with dissolved  $O_2$ .
- 7. Greaney, M. A.; Gorun, S. M. J. Phys. Chem. 1991, 95, 7142–7144.
- 8. Lawson, D. R.; Feldheim, D. L.; Foss, C. A.; Dorhout, P. K.; Elliott, C. M.; Martin, C. R.; Parkinson, B. J. Electrochem. Soc. 1992, 139, L68-L71.
- 9. Khaled, M. M.; Carlin, R. T.; Trulove, P. C.; Eaton, G. R.; Eaton, S. S. J. Am. Chem. Soc. 1994, 116, 3465–3474.
- 10. Subramanian, R.; Boulas, P.; Vijayashree, M. N.; Souze, F. D.; Jones, M. T.; Kadish, K. M. *J. Chem. Soc.*, *Chem. Commun.* **1994**, 1847–1848.
- 11. Mingfei, W.; Xianwen, W.; Ling, Q.; Zheng, X. Tetrahedron Lett. 1996, 37, 7409–7412.
- 12. Quantitative formation of  $C_{60}^{1-}$  was confirmed by the triphenyltetrazolium chloride method.
- 13. Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> (1.0 mg, 5.7 μmol) dissolved in water (50 μL) was added to **c** (Fig. 1B) in contact with air.